
Shaping the Glitch:
Optimizing Voltage

Fault Injection
Attacks

Conference on Cryptographic Hardware and
Embedded Systems 2019

Claudio Bozzato4

Riccardo Focardi12

Francesco Palmarini13

1Ca’ Foscari University of
Venice, 2Cryptosense,
3Yarix, 4Talos

August 28, 2019

Atlanta, USA

Fault what?

• Exploits hardware vulnerabilities to “create” new bugs

• Influence (inject) a system with internal / external stimuli

• Alter the intended execution flow / behavior

• Skip instructions, influence branch decisions, corrupt memory
locations, etc.

• Bypass security checks, leak data or crypto material, create side-
channels, etc.

• Non-invasive to invasive techniques: clock, voltage, EM, FIB, laser,
heat, flash, etc.

 The most widespread Voltage Fault Injection
setup [OC14]

 Very easy to setup and low-cost

× Low control over glitch parameters

× Unpredictable: the glitch characteristics
depends on circuit properties, MOSFET, etc.

Voltage Fault Injection…
The MOSFET Way

Voltage Fault Injection…
The MOSFET Way

 The most widespread Voltage Fault Injection
setup [OC14]

 Very easy to setup and low-cost

× Low control over glitch parameters

× Unpredictable: the glitch characteristics
depends on circuit properties, MOSFET, etc.

Voltage Fault Injection…
The MOSFET Way

 The most widespread Voltage Fault Injection
setup [OC14]

 Very easy to setup and low-cost

× Low control over glitch parameters

× Unpredictable: the glitch characteristics
depends on circuit properties, MOSFET, etc.

Voltage Fault Injection…
The MOSFET Way

 The most widespread Voltage Fault Injection
setup [OC14]

 Very easy to setup and low-cost

× Low control over glitch parameters

× Unpredictable: the glitch characteristics
depends on circuit properties, MOSFET, etc.

Our Idea: Arbitrary
Glitch Waveforms

DESIDERATA

 Stable and repeatable results

 High degree of freedom in
glitch generation

 Software managed attack
parameters

 Low-cost and easy to build
setup

DAC-based glitch generator

Our Idea: Arbitrary
Glitch Waveforms

DAC-based glitch generator

Our Idea: Arbitrary
Glitch Waveforms

 Rising and falling edges
affect V-FI performance
[ZDCR14]

? What if different devices /
attacks need different
glitch waveforms?

? How do we identify the
best match?

DAC-based glitch generator

AGW: with big power comes
lots of parameters

• Power supply voltage with < 10mV resolution

• Glitch shape and voltage in 2048 points

• Injection timing with ~20ns accuracy

• Glitch frequency / duration

➔ Need for automatic

parameter search and

optimization!

AGW: with big power comes
lots of parameters

➔ Genetic Algoritm (Selection,

Crossover, Mutation, Replacement)

• Power supply voltage with < 10mV resolution

• Glitch shape and voltage in 2048 points

• Injection timing with ~20ns accuracy

• Glitch frequency / duration

AGW: with big power comes
lots of parameters

➔ Cubic interpolation

• Power supply voltage with < 10mV resolution

• Glitch shape and voltage in 2048 points

• Injection timing with ~20ns accuracy

• Glitch frequency / duration

AGW: with big power comes
lots of parameters

➔ Digital-to-Analog conversion

• Power supply voltage with < 10mV resolution

• Glitch shape and voltage in 2048 points

• Injection timing with ~20ns accuracy

• Glitch frequency / duration

AGW: with big power comes
lots of parameters

➔ Precise glitch triggering

• Power supply voltage with < 10mV resolution

• Glitch shape and voltage in 2048 points

• Injection timing with ~20ns accuracy

• Glitch frequency / duration

Case Study: Renesas 78K
Firmware Extraction

● Widely used by the automotive industry

● 32 to 256KB integrated flash memory for firmware / data

● Internal bootloader for flash programming via PC

● No knowledge on the firmware / bootloader code → Blackbox

● Bootloader protocol exposes a set of API via serial interface

○ Program

○ Erase

○ Checksum

○ Verify

● Built-in security mechanisms:

○ Commands operate on 256 bytes aligned memory blocks

○ All programming and erasing commands can be disabled

○ Voltage Supervisor / BOR

Step I: Finding Vulnerabilities

● No read command… Fail

● Use FI to verify just one byte… Fail

● Use FI to calculate the checksum of one byte… Fail

● Use FI to calculate the checksum of 4 bytes (aligned)...

● Use FI to verify 4 bytes (aligned)...

Checksum(B1, B256) = 0x10000 - B1 - B2 - B3 - ... - B255 - B256

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B255 B256

Step I: Finding Vulnerabilities

0x10000 - {B1...B4} = 0xFF9A Verify(0xAA...0xDD) = True/False

● No read command… Fail

● Use FI to verify just one byte… Fail

● Use FI to calculate the checksum of one byte… Fail

● Use FI to calculate the checksum of 4 bytes (aligned)... Success

● Use FI to verify 4 bytes (aligned)... Success

00 11 22 33 ? ? ? ? AA BB CC DD ? ? ? ?

Step II: Leaking Flash Memory
Content

def checksum(start, end):

if (end != start + 256):

raise

result = 0x10000

for i in range(start, end + 1):

result = result - flash[i]

return result 0x10000 - {B1...B4} = 0xFF9A

00 11 22 33

● More leaks required more faults

● Side-channel from the checksum computation?

Step II: Leaking Flash Memory
Content

● More leaks required more faults

● Side-channel from the checksum computation?

def checksum(start, end):

if (end != start + 256):

raise

result = 0x10000

for i in range(start, end + 1):

result = result - flash[i]

return result 0x10000 - B1 - B3 - B4 = 0xFFAB
0xFF9A - 0xFFAB = 0x11

00 11 22 33

Step III: Deal With
Timing Errors

• What is the extracted value for B3?

• 0x22 with ~10% probability

• 0x33 with ~4% probability

• 0x11 with ~3% probability

• 0x00 with <1% probability

• 0x55 with <1% probability

• Plus the false positives!

Glitch trigger

● Just inject a fault for every byte, right? Nope.

Step IV: Mount the Full Attack

● Calculate the sum of B1+B2+B3+B4 = 0x66

● For each extracted candidate byte Bx:

○ Find all the 4-bytes permutations with Bx

○ Discard permutations which do not sum to 0x66

○ Glitch the verify command to test each new permutation

○ Stop when the verify is successful

● Iterate for {B5…B8} {B9…B12} … until the flash is dumped! MANY hours later…

11 33 00 22 00 00 22 78 01 32 00 33 00 11 22 33

Candidate #1 Candidate #2 Candidate #3 Candidate #4

00 11 22 33

Step V:
Compensate for

Temperature Errors

Bootloader runs from internal oscillator

The RC oscillator drift with temperature

The rate is about 0.1% / ◦C

With +6 ◦C the trigger moved by > 4 us

Solved by software compensation

● Let the attack go day and night, right? Not that easy.

Glitch trigger

Evaluation &
Comparison

• Speed: our technique is 32% faster than PULSE and 63% faster than MOSFET

• Efficiency: PULSE used ~2x the number of glitches and MOSFET ~5x

• Reliability: AGW produces 30% the number of false positives than MOSFET

Comparison of the Renesas attack performance for
three major V-FI techniques.

Evaluation &
Comparison

• Speed: our technique is 32% faster than PULSE and 63% faster than MOSFET

• Efficiency: PULSE used ~2x the number of glitches and MOSFET ~5x

• Reliability: AGW produces 30% the number of false positives than MOSFET

Comparison of the Renesas attack performance for
three major V-FI techniques.

Evaluation &
Comparison

• Speed: our technique is 32% faster than PULSE and 63% faster than MOSFET

• Efficiency: PULSE used ~2x the number of glitches and MOSFET ~5x

• Reliability: AGW produces 30% the number of false positives than MOSFET

Comparison of the Renesas attack performance for
three major V-FI techniques.

Evaluation &
Comparison

• Speed: our technique is 32% faster than PULSE and 63% faster than MOSFET

• Efficiency: PULSE used ~2x the number of glitches and MOSFET ~5x

• Reliability: AGW produces 30% the number of false positives than MOSFET

Comparison of the Renesas attack performance for
three major V-FI techniques.

Just 60KB!

Evaluation &
Comparison

• Speed: our technique is 32% faster than PULSE and 63% faster than MOSFET

• Efficiency: PULSE used ~2x the number of glitches and MOSFET ~5x

• Reliability: AGW produces 30% the number of false positives than MOSFET

Comparison of the Renesas attack performance for
three major V-FI techniques.

Evaluation &
Comparison

• Speed: our technique is 32% faster than PULSE and 63% faster than MOSFET

• Efficiency: PULSE used ~2x the number of glitches and MOSFET ~5x

• Reliability: AGW produces 30% the number of false positives than MOSFET

Comparison of the Renesas attack performance for
three major V-FI techniques.

Evaluation &
Comparison

• Speed: our technique is 32% faster than PULSE and 63% faster than MOSFET

• Efficiency: PULSE used ~2x the number of glitches and MOSFET ~5x

• Reliability: AGW produces 30% the number of false positives than MOSFET

Comparison of the Renesas attack performance for
three major V-FI techniques.

Evaluation and comparison

Verify 4-bytes Checksum 4-bytes Checksum leak

Different glitch waveforms provide the best performance for different vulnerabilities.

Evaluation and comparison

Comparison of the glitch waveforms / techniques for the Renesas attack.

Verify 4-bytes Checksum 4-bytes Checksum leak

Contributions

● Studied the effects of Arbitrary Glitch Waveforms on the performance
of V-FI

● Investigated on the feasibility of automatic attack parameter selection
and optimization using Genetic Algorithms

● Found unpublished vulnerabilities that enable firmware extraction
attacks for six microcontrollers from by three major silicon
manufacturers:

○ STMicroelectronics - STM32F1 & STM32F3
○ Texas Instruments - MSP430 F5xx & MSP430 FRAM
○ Renesas Electronics - 78K0/Kx2 & 78K0R/Kx3-L

● In-depth analysis and evaluation of the attack performance compared
to other V-FI techniques

THANK YOU!

References

• [BFP19] C. Bozzato, R. Focardi, F. Palmarini. Shaping the Glitch: Optimizing
Voltage Fault Injection Attacks. TCHES 2019.

• [ZDCR14] L. Zussa, J. Dutertre, J. Clediere, B. Robisson. Analysis of the fault
injection mechanism related to negative and positive power
supply glitches using an on-chip Voltmeter. HOST 2014.

• [OC14] C. O’Flynn, Z. Chen. ChipWhisperer. An Open-Source Platform for
Hardware Embedded Security Research. COSADE 2014.

palmarini@unive.it

