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Fault what?

• Exploits hardware vulnerabilities to “create” new bugs

• Influence (inject) a system with internal / external stimuli

• Alter the intended execution flow / behavior

• Skip instructions, influence branch decisions, corrupt memory 
locations, etc.

• Bypass security checks, leak data or crypto material, create side-
channels, etc.

• Non-invasive to invasive techniques: clock, voltage, EM, FIB, laser, 
heat, flash, etc.



 The most widespread Voltage Fault Injection 
setup [OC14]

 Very easy to setup and low-cost

× Low control over glitch parameters

× Unpredictable: the glitch characteristics 
depends on circuit properties, MOSFET, etc.
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Voltage Fault Injection… 
The MOSFET Way

 The most widespread Voltage Fault Injection 
setup [OC14]

 Very easy to setup and low-cost

× Low control over glitch parameters

× Unpredictable: the glitch characteristics 
depends on circuit properties, MOSFET, etc.



Our Idea: Arbitrary 
Glitch Waveforms

DESIDERATA

 Stable and repeatable results

 High degree of freedom in 
glitch generation

 Software managed attack 
parameters

 Low-cost and easy to build 
setup

DAC-based glitch generator
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Our Idea: Arbitrary 
Glitch Waveforms

 Rising and falling edges 
affect V-FI performance 
[ZDCR14]

? What if different devices / 
attacks need different 
glitch waveforms? 

? How do we identify the 
best match?

DAC-based glitch generator



AGW: with big power comes 
lots of parameters

• Power supply voltage with < 10mV resolution

• Glitch shape and voltage in 2048 points

• Injection timing with ~20ns accuracy

• Glitch frequency / duration

➔ Need for automatic 

parameter search and 

optimization!
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AGW: with big power comes 
lots of parameters

➔ Precise glitch triggering

• Power supply voltage with < 10mV resolution

• Glitch shape and voltage in 2048 points

• Injection timing with ~20ns accuracy

• Glitch frequency / duration



Case Study: Renesas 78K 
Firmware Extraction

● Widely used by the automotive industry

● 32 to 256KB integrated flash memory for firmware / data

● Internal bootloader for flash programming via PC

● No knowledge on the firmware / bootloader code → Blackbox

● Bootloader protocol exposes a set of API via serial interface

○ Program

○ Erase

○ Checksum

○ Verify

● Built-in security mechanisms:

○ Commands operate on 256 bytes aligned memory blocks

○ All programming and erasing commands can be disabled

○ Voltage Supervisor / BOR



Step I: Finding Vulnerabilities

● No read command… Fail 

● Use FI to verify just one byte… Fail

● Use FI to calculate the checksum of one byte… Fail

● Use FI to calculate the checksum of 4 bytes (aligned)...

● Use FI to verify 4 bytes (aligned)... 

Checksum(B1, B256) = 0x10000 - B1 - B2 - B3 - ... - B255 - B256

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 ... ... B255 B256



Step I: Finding Vulnerabilities

0x10000 - {B1...B4} = 0xFF9A Verify(0xAA...0xDD) = True/False

● No read command… Fail 

● Use FI to verify just one byte… Fail

● Use FI to calculate the checksum of one byte… Fail

● Use FI to calculate the checksum of 4 bytes (aligned)... Success

● Use FI to verify 4 bytes (aligned)... Success 

00 11 22 33 ? ? ? ? AA BB CC DD ? ? ? ?



Step II: Leaking Flash Memory 
Content

def checksum(start, end):

if (end != start + 256):

raise

result = 0x10000

for i in range(start, end + 1):

result = result - flash[i]

return result 0x10000 - {B1...B4} = 0xFF9A

00 11 22 33

● More leaks required more faults

● Side-channel from the checksum computation?



Step II: Leaking Flash Memory 
Content

● More leaks required more faults

● Side-channel from the checksum computation?

def checksum(start, end):

if (end != start + 256):

raise

result = 0x10000

for i in range(start, end + 1):

result = result - flash[i]

return result 0x10000 - B1 - B3 - B4 = 0xFFAB
0xFF9A - 0xFFAB = 0x11

00 11 22 33



Step III: Deal With 
Timing Errors

• What is the extracted value for B3?

• 0x22 with ~10% probability

• 0x33 with   ~4% probability

• 0x11 with   ~3% probability

• 0x00 with   <1% probability

• 0x55 with   <1% probability

• Plus the false positives!

Glitch trigger

● Just inject a fault for every byte, right? Nope.



Step IV: Mount the Full Attack

● Calculate the sum of B1+B2+B3+B4 = 0x66

● For each extracted candidate byte Bx:

○ Find all the 4-bytes permutations with Bx

○ Discard permutations which do not sum to 0x66

○ Glitch the verify command to test each new permutation

○ Stop when the verify is successful

● Iterate for {B5…B8} {B9…B12} … until the flash is dumped! MANY hours later… 

11 33 00 22 00 00 22 78 01 32 00 33 00 11 22 33

Candidate #1 Candidate #2 Candidate #3 Candidate #4

00 11 22 33



Step V: 
Compensate for 

Temperature Errors

Bootloader runs from internal oscillator

The RC oscillator drift with temperature

The rate is about 0.1% / ◦C

With +6 ◦C the trigger moved by > 4 us

Solved by software compensation

● Let the attack go day and night, right? Not that easy.

Glitch trigger



Evaluation & 
Comparison

• Speed: our technique is 32% faster than PULSE and 63% faster than MOSFET

• Efficiency: PULSE used ~2x the number of glitches and MOSFET ~5x

• Reliability: AGW produces 30% the number of false positives than MOSFET

Comparison of the Renesas attack performance for 
three major V-FI techniques.
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Evaluation and comparison

Verify 4-bytes Checksum 4-bytes Checksum leak

Different glitch waveforms provide the best performance for different vulnerabilities.



Evaluation and comparison

Comparison of the glitch waveforms / techniques for the Renesas attack.

Verify 4-bytes Checksum 4-bytes Checksum leak



Contributions

● Studied the effects of Arbitrary Glitch Waveforms on the performance 
of V-FI

● Investigated on the feasibility of automatic attack parameter selection
and optimization using Genetic Algorithms

● Found unpublished vulnerabilities that enable firmware extraction 
attacks for six microcontrollers from by three major silicon 
manufacturers:

○ STMicroelectronics - STM32F1 &  STM32F3
○ Texas Instruments - MSP430 F5xx &  MSP430 FRAM
○ Renesas Electronics - 78K0/Kx2 &  78K0R/Kx3-L

● In-depth analysis and evaluation of the attack performance compared 
to other V-FI techniques



THANK YOU!
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